

INFIX NOTATION

Infix notation is the common arithmetic and logical formula

notation, in which operators are written infix-style between

the operands they act on

E.g. A + B

POSTFIX NOTATION

In Postfix notation, the operator comes after the Operand.

For example, the Infix expression A+B will be written as AB+

in its Postfix Notation.

Postfix is also called ‘Reverse Polish Notation’

PREFIX NOTATION

In Prefix notation, the operator comes before the operand.

The Infix expression A+B will be written as +AB in its Prefix

Notation.

Prefix is also called ‘Polish Notation’

BUILDING AN ARITHMETIC EXPRESSION

CONVERSION FROM INFIX TO POSTFIX
ALGORITHM

Step1

Scan the Infix expression from left to right for tokens

(Operators, Operands & Parentheses) and perform the steps

2 to 5 for each token in the Expression

ALGORITHM

Step2

If token is operand, Append it in postfix expression

Step3

If token is a left parentheses “(“, push it in stack.

ALGORITHM
Step4

If token is an operator,

Pop all the operators which are of higher or equal

precedence then the incoming token and append them

(in the same order) to the output Expression.

After popping out all such operators, push the new token

on stack.

ALGORITHM
Step5

If “)” right parentheses is found,

Pop all the operators from the Stack and append them to

Output String, till you encounter the Opening

Parenthesis “(“.

Pop the left parenthesis but don’t append it to the output

string (Postfix notation does not have brackets).

ALGORITHM
Step6

When all tokens of Infix expression have been scanned. Pop

all the elements from the stack and append them to the

Output String.

The Output string is the Corresponding Postfix Notation.

EXAMPLE

EXAMPLE
Let the incoming the Infix expression be:

A * (B + C) – D / E

Stage 1: Stack is empty and we only have the Infix

Expression.

EXAMPLE

Stage 2

The first token is Operand A Operands are Appended to the

Output as it is.

EXAMPLE

Stage 3

Next token is * Since Stack is empty (top==NULL) it is

pushed into the Stack

EXAMPLE
Stage 4

Next token is (the precedence of open-parenthesis, when it is to go

inside, is maximum.

But when another operator is to come on the top of ‘(‘ then its

precedence is least.

EXAMPLE

Stage 5

Next token, B is an operand which will go to the Output expression

as it is

EXAMPLE

Stage 6

Next token, + is operator, We consider the precedence of top element

in the Stack, ‘(‘. The outgoing precedence of open parenthesis is the

least (refer point 4. Above). So + gets pushed into the Stack

EXAMPLE

Stage 7

 Next token, C, is appended to the output

EXAMPLE

Stage 8

Next token), means that pop all the elements from Stack and append

them to the output expression till we read an opening parenthesis.

EXAMPLE
Stage 9

Next token, -, is an operator. The precedence of operator on the top

of Stack ‘*‘ is more than that of Minus. So we pop multiply and

append it to output expression. Then push minus in the Stack.

EXAMPLE

Stage 10

Next, Operand ‘D‘ gets appended to the output.

EXAMPLE

Stage 11

Next, we will insert the division operator into the Stack because its

precedence is more than that of minus.

EXAMPLE

Stage 12

The last token, E, is an operand, so we insert it to the output

Expression as it is.

EXAMPLE

Stage 13

The input Expression is complete now. So we pop the Stack and

Append it to the Output Expression as we pop it.

(((A + B) * (C - E)) / (F + G))

 stack: <empty>

 output: []

EXAMPLE 2

((A + B) * (C - E)) / (F + G))

 stack: (

 output: []

EXAMPLE 2

(A + B) * (C - E)) / (F + G))

 stack: ((

 output: []

EXAMPLE 2

A + B) * (C - E)) / (F + G))

 stack: (((

 output: []

EXAMPLE 2

+ B) * (C - E)) / (F + G))

 stack: (((

 output: [A]

EXAMPLE 2

B) * (C - E)) / (F + G))

 stack: (((+

 output: [A]

EXAMPLE 2

) * (C - E)) / (F + G))

 stack: (((+

 output: [A B]

EXAMPLE 2

* (C - E)) / (F + G))

 stack: ((

 output: [A B +]

EXAMPLE 2

(C - E)) / (F + G))

 stack: ((*

 output: [A B +]

EXAMPLE 2

C - E)) / (F + G))

 stack: ((* (

 output: [A B +]

EXAMPLE 2

- E)) / (F + G))

 stack: ((* (

 output: [A B + C]

EXAMPLE 2

E)) / (F + G))

 stack: ((* (-

 output: [A B + C]

EXAMPLE 2

)) / (F + G))

 stack: ((* (-

 output: [A B + C E]

EXAMPLE 2

) / (F + G))

 stack: ((*

 output: [A B + C E -]

EXAMPLE 2

/ (F + G))

 stack: (

 output: [A B + C E - *]

EXAMPLE 2

(F + G))

 stack: (/

 output: [A B + C E - *]

EXAMPLE 2

F + G))

 stack: (/ (

 output: [A B + C E - *]

EXAMPLE 2

+ G))

 stack: (/ (

 output: [A B + C E - * F]

EXAMPLE 2

G))

 stack: (/ (+

 output: [A B + C E - * F]

EXAMPLE 2

))

 stack: (/ (+

 output: [A B + C E - * F G]

EXAMPLE 2

)

 stack: (/

 output: [A B + C E - * F G +]

EXAMPLE 2

 stack: <empty>

 output: [A B + C E - * F G + /]

EXAMPLE 2

