

INFIX NOTATION

*Infix notation is the common arithmetic and logical formula
notation, in which operators are written infix-style between

the operands they act on

*E.g A+ B

POSTFIX NOTATION

*In Postfix notation, the operator comes after the Operand.

*For example, the Infix expression A+B will be written as AB+

in its Postfix Notation.

*xPostfix is also called ‘Reverse Polish Notation’

PREFIX NOTATION

*In Prefix notation, the operator comes before the operand.

*The Infix expression A+B will be written as +AB in its Prefix

Notation.

*xPrefix is also called ‘Polish Notation’

BUILDING AN ARITHMETIC EXPRESSION

E] Stri P . Assume 1-digit integer operands,
Xpression rng rrocessing the binary operators + - ™/ only,

and the string to be evaluated is
properly formed

r processing the postfix string:
from the left hand end, inspect each character of the string

it's an operand — push it on the stack

it's an operator — remove the top 2 operands from the stack,
erform the indicated operation, and push the result on the stack

mple: 3* (4+5) /2 =2 345+*2/ =2 13

maining Postfix String int Stack (top—=>) Rule Used

345+*2/ empty

A5+%2/ 3 1
5+%2/ 3 4 1
+*x2/ 3 4 5 1
*2/ 3 9 2
2/ 277 2
/ 27 2 1

null 13 2 ‘
.

value of expression at top of stack

CONVERSION FROM INFIX T0 POSTFIX
ALGORITHM

Stepl

*Scan the Infix expression from left to right for tokens
(Operators, Operands & Parentheses) and perform the steps

2 to 5 for each token in the Expression

ALGORITHM

Step2
*If token is operand, Append it in postfix expression
Step3

If token is a left parentheses “(, push it in stack.

ALGORITHM

Step4
*If token is an operator,

>»Pop all the operators which are of higher or equal
precedence then the incoming token and append them

(in the same order) to the output Expression.

» After popping out all such operators, push the new token

on stack.

ALGORITHM

StepS
*If “)” right parentheses is found,

»Pop all the operators from the Stack and append them to
Output String, till you encounter the Opening

Parenthesis ““(“.

»Pop the left parenthesis but don’t append it to the output

string (Postfix notation does not have brackets).

ALGORITHM

Stepb

*When all tokens of Infix expression have been scanned. Pop
all the elements from the stack and append them to the

Output String.

*The Output string is the Corresponding Postfix Notation.

EXAMPLE

me:?—(2*3+5)*(8—4/2} - T723*%54+842/—*%-
aining Infix String char Stack Postfix String Rule Used
(2*3+5)*(8-4/2) empty null

*345) % (8=4/2) empty 7 1
3+5) (8-4/2) - 7 3
+5) *(8-4/2) —(7 2
5)*(8=-4/2) — 72 1
) *(8-4/2) —-(* 72 3
) *(8-4/2) - (* 723 3
*(8-4/2) - (+ T23% 3
(8-4/2) - (+ 723*%5 1
8-4/2) - 723*5+ 1
4/2) —* 723*5+ 3
4/2) —*(T23*%5+ 2
/2) —*(723*%5+8 1
) —* (- 723*%5+8 3
) —* (- 7123*5+84 1
-k (=/ 723*%5+84 3

—*(=/ 723*5+842 1
1 empty 723*5+842/—*~— 4&5

Example A*(B+C *D)+ Ebecomes ABCD*+*E +

current symbol operator stack postfix string
A

- - A

(il ¢ A

B ol 4 AB

. “(+ AB

O *(+ ABC

- “(+* ABC

D il & X ABCD

) - ABCD®*«»+

- K ABCD®+*

E + ABCD®*+*E

ABCD®*4+*E+

EXAMPLE

*Let the incoming the Infix expression be:
A*(B+C)-D/E

Stage 1: Stack is empty and we only have the Infix

Expression. InFix Notation:
A*(B+C)-D/E

PostFix Notation:

top NULL

Stack

L

EXAMPLE

Stage 2

*The first token is Operand A Operands are Appended to the

Output as it is.

top NULL

Stack

InFix Notation:

*B+C)-D/E

PostFix Notation:
A

L

EXAMPLE

Stage 3

*Next token is * Since Stack is empty (top==NULL) it is

pushed into the Stack

InFix Notation:
B+C)-D/E

PostFix Notation:
A

top > *
Stack

EXAMPLE

Stage 4

*Next token is (the precedence of open-parenthesis, when it is to go

inside, is maximum.

*But when another operator is to come on the top of ‘(‘ then its

precedence is least. InFix Notation:
B+ C)-D/E

PostFix Notation:
A

top = (

Stack

EXAMPLE

Stage 5

*Next token, B is an operand which will go to the Output expression

as itis

top =

Stack

InFix Notation:

+C)-D/E

PostFix Notation:
AB

L

EXAMPLE

Stage 6

*Next token, + is operator, We consider the precedence of top element
in the Stack, ‘(*. The outgoing precedence of open parenthesis is the

least (refer point 4. Above). So + gets pushed into the Stack

InFix Notation:
C)-D/E

PostFix Notation:
AB

top = +

Stack

EXAMPLE

Stage 1

* Next token, C, is appended to the output

top =>»

Stack

InFix Notation:
)-D/E

PostFix Notation:

ABC

EXAMPLE

Stage 8

*Next token), means that pop all the elements from Stack and append

them to the output expression till we read an opening parenthesis.

InFix Notation:
-D/E

PostFix Notation:
ABC+

top = *
Stack

EXAMPLE

Stage 9

*Next token, -, is an operator. The precedence of operator on the top
of Stack **‘ is more than that of Minus. So we pop multiply and

append it to output expression. Then push minus in the Stack.

InFix Notation:
D/E

PostFix Notation:
ABC+*

top => -
Stack

EXAMPLE

Stage 10

Next, Operand ‘D gets appended to the output.

top =>»

Stack

InFix Notation:
/K

PostFix Notation:
ABC++#D

EXAMPLE

Stage 11

*Next, we will insert the division operator into the Stack because its

precedence is more than that of minus.

top =

Stack

InFix Notation:
E

PostFix Notation:
ABC++#D

L

EXAMPLE

Stage 12

*The last token, E, is an operand, so we insert it to the output

Expression as it is.

top =

Stack

InFix Notation:

PostFix Notation:
ABC+*DE

EXAMPLE

Stage 13

*The input Expression is complete now. So we pop the Stack and

Append it to the Output Expression as we pop it.

InFix Notation:

PostFix Notation:
ABC+*DE/-

top=NULL Stack

EXAMPLE 2

(((A+B)*(C-E))/(F+G))

= stack: <empty>

= output: []

EXAMPLE 2

((A+B)*(C-E))/(F+G))

= stack: (
= output: []

EXAMPLE 2

(A+B)*(C-E))/(F+G))

= stack: ((
= output: []

EXAMPLE 2

A+B)*(C-E))/(F+G))

= stack: (((
= output: []

EXAMPLE 2

+B)*(C-E))/(F+G))

= stack: (((
= output: [A]

EXAMPLE 2

B)*(C-E))/(F+G))

= stack: (((+
= output: [A]

EXAMPLE 2

)*(C-E))/(F+G))

= stack: (((+
= output: [A B]

EXAMPLE 2

*(C-E))/(F+G))

= stack: ((
= output: [AB +]

EXAMPLE 2

(C-E))/(F+G))

= stack: ((*
= output: [AB +]

EXAMPLE 2

C-E))/(F+G))

= stack: ((* (
= output: [AB +]

EXAMPLE 2

-E))/(F+G))

= stack: ((* (
= output: [AB + C]

EXAMPLE 2

E))/(F+G))

= stack: ((* (-
= output: [AB + C]

EXAMPLE 2

))/ (F+G))

= stack: ((* (-
= output: [AB+ CE]

EXAMPLE 2

)/ (F+G))

= stack: ((*
= output: [AB+ CE -]

EXAMPLE 2

/(F+G))

= stack: (
=output: [AB+ CE-*]

EXAMPLE 2

(F+G))

= stack: (/
=output: [AB+ CE-*]

EXAMPLE 2

F+G))

= stack: (/ (
=output: [AB+ CE-*]

EXAMPLE 2

+G))

= stack: (/ (
=output: [AB+ CE-*F]

EXAMPLE 2

G))

= stack: (/ (+
=output: [AB+ CE-*F]

EXAMPLE 2

))

= stack: (/ (+
=output: [AB+CE-*FG]

EXAMPLE 2

)

= stack: (/
=output: [AB+CE-*FG +]

EXAMPLE 2

= stack: <empty>
=output: [AB+CE-*FG+ /]

